Journal of Organometallic Chemistry, 372 (1989) 251-261 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands JOM 09965

Organotransition-metal complexes of multidentate ligands

IX *. Synthesis and structure of hydridotris(benzotriazol-lyl)borate derivatives of the group VI metal carbonyls

Kom-Bei Shiu *, Fuw-Ming Shen,

Department of Chemistry, National Cheng Kung University, Tainan (Taiwan) 70101

Sue-Lein Wang and Shi-Chen Wei

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043 (Received February 21st, 1989)

Abstract

Potassium hydridotris(benzotriazol-l-yl)borate (KL) reacts with $[M(CO)_6]$ (M = Mo, W) to give K[ML(CO)_3]. Upon addition of electrophiles, the potassium salts and also $[Et_4N][ML(CO)_3]$ are converted readily into $[ML(CO)_3Br]$, $[ML(CO)_3I]$, $[ML(CO)_2(NO)]$ and $[ML(CO)_2(\pi-allyl)]$. The solid-state structure of $[MoL(CO)_2(\pi-allyl)]$ has been determined by X-ray diffraction, showing that the tridentate ligand (L⁻) contains the more hindered B-N bonds and that the metal coordination occurs at the 2 position of the ring of the benzotriazolyl fragments of the ligand.

Introduction

Our success in the preparation and the structural characterization of several organotransition-metal complexes of the pyrazole-derived multidentates [1] has led to explore other multidentate ligands prepared from the different heterocyclic compounds and the corresponding derivatives of the group VI metal carbonyls [2]. The recent report by Lalor, Miller and Garvey [3] on the synthesis and reactivity of potassium hydridotris(benzotriazol-1-yl)borate (KL) has prompted us to provide details of our preparation and the applications of KL. We present here our evidence that clearly shows the geometrical structure of the uninegative nitrogen-tripod ligand, L^- , to have the more hindered B–N bonds, shown in I, rather than the less hindered B–N bonds, displayed in II.

^{*} For Part VIII, see ref. 1a.

Results and discussion

A mixture of 1-H-benzotriazole and KBH₄ when heated gradually to 220 °C results in the evolution of three moles of H₂, and work-up of the reaction mixture gives a white solid, analysis of which is consistent with potassium hydridotris(benzotriazol-l-yl)borate (KL). The L anion can replace the three mutually cis carbonyls of $[M(CO)_6]$ (M = Mo, W) to give $[ML(CO)_3]^-$. The addition of electrophiles to $K[ML(CO)_3]$ or $[Et_4N][ML(CO)_3]$ converts the salts readily into $[MoL(CO)_3Br]$ (I), $[WL(CO)_3Br]$ (II), $[MoL(CO)_2(\pi-allyl)]$ (VI), $[MoL(CO)_2(\pi-allyl)]$ (VII) and $[WL(CO)_2(\pi-allyl)]$ (VIII) (Scheme 1).

$$[ML(CO)_{3}Br] \qquad [ML(CO)_{3}I]$$

$$L^{-} + [M(CO)_{6}] \longrightarrow [ML(CO)_{3}]^{-} \xrightarrow{\text{allyl bromide}} [ML(CO)_{2}(\pi-\text{allyl})]$$

$$(M = Mo, W) \qquad \qquad \downarrow [NO][BF_{4}]$$

$$[ML(CO)_{2}(NO)]$$

Scheme 1

In Table 1 are listed the analytical data for, and the color and yields of KL and the complexes we have isolated. The spectroscopic data of KL and of all the ML complexes we have isolated are listed in Table 2. Since the salts K[WL(CO)₃] and [Et₄N][WL(CO)₃] are very air-sensitive, they were allowed to react with electrophiles in solution without prior isolation to give the neutral WL complexes. On the basis of our data and those for the analogous MoTp or MoTp' complexes (Tp⁻= hydridotris(pyrazol-1-yl)borate; Tp'⁻= hydridotris(3,5-dimethylpyrazol-1-yl)borate) [4-6], as well as the solid-state structure of VII described below, both [ML(CO)₂(NO)] and [ML(CO)₂(π -allyl)] have the structure depicted formally as III with L = NO and π -allyl, respectively, whereas [ML(CO)₃X] (X = Br, I) has the geometry, IV, similar to that of [MoTp(CO)₃Br]. Since only one set of resonance signals can be assigned to benzotriazolyl carbons in the ¹³C{¹H} NMR spectra of [ML(CO)₂(π allyl)] and [ML(CO)₃X], these complexes are probably fluxional in solution at room temperature.

It is noteworthy that $[ML(CO)_2(\pi-allyl)]$ and $[MoTp(CO)_2(\pi-allyl)]$ can be obtained by a direct route by reaction of relevant anion with the allyl bromide, whereas the previously described complex $[MoTp'(CO)_2(\pi-allyl)]$, cannot be obtained by a similar direct-allylation but can be obtained indirectly from the reaction of KTp' with $[Mo(CH_3CN)_2(CO)_2(\pi-allyl)Br]$ [5]. Thus, the nucleophilicities of the

Compound	Analysis (found (calcd	.) (%))	Color	Yield (%)
	c	Н	N		
KL	53.57	3.45	31.50	white	93
	(53.34)	(3.23)	(31.11)		
[Et ₄ N][MoL(CO) ₃]	51.18	4.90	20.68	orange-red	89
	(51.50)	(4.92)	(20.71)		
[MoL(CO) ₃ Br]	39.88	2.29	19.76	yellow-brown	81
(I)	(40.29)	(2.09)	(20.14)		
[WL(CO) ₃ Br]	35.16	1. 9 0	17.58	orange-yellow	89
(II)	(35.32)	(1.84)	(17.66)		
[MoL(CO) ₃ I]	37.22	2.03	18.69	red-brown	85
(III)	(37.47)	(1.95)	(18.73)		
[WL(CO) ₃ I]	32.98	1.78	1 6.46	orange-red	88
(IV)	(33.14)	(1.72)	(16.57)		
$[MoL(CO)_2(NO)] \cdot \frac{1}{2}H_2O$	43.26	2.53	24.89	orange-yellow	69
(V)	(43.11)	(2.53)	(25.14)		
$[WL(CO)_2(NO)] \cdot \frac{1}{2}H_2O$	37.11	2.18	21.68	yellow-brown	68
(VI)	(37.22)	(2.18)	(21.73)	-	
$[MoL(CO)_{2}(\pi - C_{3}H_{3})]$	49.01	3.29	22.35	orange-yellow	86
(VII)	(49.40)	(3.24)	(22.55)		
$[WL(CO)_2(\pi - C_3H_5)]$	42.29	2.87	19.30	orange-yellow	85
(VIII)	(42.69)	(2.80)	(19.48)	_ •	

Table 1 Analytical data for KL and the ML compounds

Fig. 1. Structure of $[MoL(CO)_2(\pi - C_3H_5)]$ (VII) with numbering scheme. The probability ellipsoids are at the 50% level.

Table 2 Spectroscopic data for KL and the ML compounds

Complex	IR a , cm ⁻¹			NMR ^{b,c} , ppm	
	r(CO)		⊮(BH)	H	¹³ C(¹ H)
	KBr	solution	KBr		
KL			2496(w)	7.99 (3 H, m)	
				7.93 (3 H, m)	
				7.49 (3 Н, ш)	
				7.30 (3 H, m)	
[Et ₄ N][MoL(CO) ₃]	1906(s)	1908(s)	2 4 92(w)	8.10 (3 H, d, J = 8.3 Hz)	229.7 (3 C, s) 112.4 (3 C, s)
	1775(vs)	1790(vs)		7.94 (3 H, d, J = 8.5 Hz)	146.4 (3 C, s)
				7.52 (3 H, dd)	138.7 (3 C, s)
				7.34 (3 H, dd)	128.2 (3 C, s)
				3.12 (8 H, q, J = 7.3 Hz)	125.1 (3 C, s)
				1.17 (12 H, tt)	118.3 (3 C, s)
(1)	2064(s)	2060(s)	2520(w)	8.30 (3 H, d, J = 8.8 Hz)	234.6 (3 C, s) 126.2 (3 C, s)
	1996(s)	1998(s)		8.08 (3 H, d, $J = 8.7$ Hz)	146.0 (3 C, s) 119.7 (3 C, s)
	1966(s)	1970(s)		7.71 (3 H, dd)	137.4 (3 C, s) 111.9 (3 C, s)
				7.51 (3 H, dd)	130.0 (3 C, s)
(11)	2056(s)	2056(s)	2536(w)	8.33 (3 H, d, J = 8.8 Hz)	206.1 (3 C, s) 127.4 (3 C, s)
	1982(s)	1972(s)		8.10(3 H, d, J = 8.4 Hz)	147.1 (3 C, s) 120.0 (3 C, s)
	1942(s)	1944(s)		7.75 (3 H, dd)	138.4 (3 C, s)113.3 (3 C, s)
				7.55 (3 H, dd)	131.2 (3 C, s)
(111)	2060(s)	2056(s)	2524(w)	8.25 (3H, d, $J = 8.6$ Hz)	233.9 (3 C, s) 127.1 (3 C, s)
	1998(s)	1990(s)		8.06(3 H, d, J = 7,9 hz)	146.7 (3 C, s) 120.0 (3 C, s)
	1960(s)	1964(s)		7.68 (3 H, dd)	138.3 (3 C, s) 113.3 (3 C, s)
				7.48 (3 H, dd)	130.9 (3 C, s)
(IV)	2040(s)	2044(s)	2528(w)	8.30 (3 H, d, J = 8.6 Hz)	206.1 (3 C, s) 127.4 (3 C, s)

		1960(s)	1970(s)		8.09 (3 H, d, J = 8.8 Hz)	147.1 (3 C, s) 120.1 (3 C, s)
		1942(s)	1944(s)		7.73 (3 H, dd)	138.4 (3 C, s) 113.4 (3 C, s)
					7.53 (3 H, dd)	131.2 (3 C, s)
	દ	2036(s)	2040(s)	2488(w)	8.05 (3 H, m)	220.9 (3 C, s) 129.7 (1 C, s) 119.6 (2 C, s)
		1952(s)	1962(s)		7.98 (3 H, m)	146.0 (2 C, s) 128.9 (2 C, s) 111.5 (1 C, s)
		1694(s) ^d	1694(s) ^d		7.57 (3 H, m)	145.3 (1 C, s) 125.9 (1 C, s) 111.2 (2 C, s)
					7.40 (3 H, s)	137.5 (2 C, s) 125.4 (2 C, s)
(V1) $2024(s)$ $2028(s)$ $2492(w)$ $8.03(34,m)$ $218.2(2.5, s)$ $1926(s)$ $1938(s)$ $7.98(34,m)$ $146.2(5.5, s)$ $1926(s)$ $1938(s)$ $7.60(34,m)$ $146.2(5.5, s)$ $1690(s)^d$ $1678(s)^d$ $7.60(34,m)$ $145.5(1.5, s)$ $1870(s)$ $1950(s)$ $1960(s)$ $2524(w)$ $7.97(34, h)$ $137.3(2.5, s)$ $1870(s)$ $11874(s)$ $7.30(34, d, f = 8.941z)$ $1137.3(3.5, s)$ $1870(s)$ $11874(s)$ $7.30(34, d, f = 8.941z)$ $1137.3(3.5, s)$ $1870(s)$ $11874(s)$ $7.30(24, d, f = 8.641z)$ $1137.3(3.5, s)$ $1870(s)$ $11874(s)$ $7.30(24, d, f = 8.641z)$ $1137.3(3.5, s)$ $1115(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$						136.8 (1 C, s) 119.8 (1 C, s)
$ (VII) \qquad 1926(s) \qquad 1938(s) \\ 1678(s)^{d} \qquad 1678(s)^{d} \qquad 7.66 (3 H, m) \qquad 145.5 (1 C, s) \\ 1500(s)^{d} \qquad 1678(s)^{d} \qquad 7.66 (3 H, m) \qquad 137.3 (2 C, s) \\ 7.40 (3 H, m) \qquad 135.7 (1 C, s) \\ 7.40 (3 H, m) \qquad 135.7 (1 C, s) \\ 7.40 (3 H, m) \qquad 137.3 (2 C, s) \\ 7.51 (3 H, d) \qquad 7.37 (3 H, b) \qquad 137.3 (3 C, s) \\ 7.51 (3 H, d) \qquad 7.38 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.33 (3 H, d) \qquad 7.38 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.32 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.33 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.3 (3 C, s) \\ 7.31 (3 H, d) \qquad 137.4 (3 C, s)$	(rv)	2024(s)	2028(s)	2492(w)	8.03 (3 H, m)	218.2 (2 C, s) 130.2 (1 C, s) 119.8 (2 C, s)
$ (VII) \qquad 1690(s)^{d} \qquad 1678(s)^{d} \qquad 7.60 (3 H, m) \qquad 145.6 (1 C, s) \\ 7.40 (3 H, m) \qquad 136.7 (1 C, s) \\ 7.40 (3 H, m) \qquad 137.3 (2 C, s) \\ 1870(s) \qquad 1950(s) \qquad 2524(w) \qquad 7.97 (3 H, br) \qquad 224.8 (2 C, s) \\ 7.51 (3 H, dd) \qquad 137.3 (3 C, s) \\ 7.51 (3 H, dd) \qquad 137.3 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 7.33 (3 H, dd) \qquad 128.9 (3 C, s) \\ 1115 (3 C, s) \\ 1936(s) \qquad 1950(s) \qquad 2532(w) \qquad 7.97 (3 H, br) \qquad 119.4 (3 C, s) \\ 7.90 (3 H, d, J = 6.4 Hz) \qquad 1115 (3 C, s) \\ 7.90 (3 H, d, J = 9.8 Hz) \qquad 1115 (3 C, s) \\ 7.90 (3 H, d, J = 9.8 Hz) \qquad 1115 (3 C, s) \\ 7.90 (3 H, d, J = 6.2 Hz) \qquad 1172 (3 C, s) \\ 7.36 (1 H, m) \qquad 1370 (1 H, m) \\ 7.310 (1 H, m) \qquad 1370 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7.310 (1 H, m) \qquad 138 (1 C, s) \\ 7$		1926(s)	1938(s)		7.98 (3 H, m)	146.2 (2 C, s) 129.4 (2 C, s) 111.5 (1 C, s)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1690(s) ^d	$1678(s)^{d}$		7.60 (3 H, m)	145.5 (1 C, s) 126.3 (1 C, s) 111.2 (2 C, s)
$ (VII) \qquad 1950(s) \qquad 1960(s) \qquad 2524(w) \qquad 7.97 (3 H, br) \qquad 2248 (2 C, s) \\ 1870(s) \qquad 1870(s) \qquad 1874(s) \qquad 2524(w) \qquad 7.97 (3 H, br) \qquad 2248 (2 C, s) \\ 7.30 (3 H, d, J) \qquad 2248 (2 C, s) \\ 7.31 (3 H, d, d) \qquad 1173 (3 C, s) \\ 7.33 (3 H, d, d) \qquad 128.9 (1 C, s) \\ 7.33 (3 H, d, d) \qquad 128.9 (2 C, s) \\ 7.33 (3 H, d, d) \qquad 128.9 (3 C, s) \\ 1036(s) \qquad 1950(s) \qquad 2532(w) \qquad 7.97 (3 H, br) \qquad 1115 (3 C, s) \\ 7.90 (3 H, d, J) = 9.8 Hz) \qquad 1115 (3 C, s) \\ 7.90 (3 H, d, J) = 8.6 Hz) \qquad 1115 (3 C, s) \\ 7.33 (3 H, br) \qquad 1115 (3 C, s) \\ 7.35 (3 H, br) \qquad 1115 (3 C, s) \\ 7.36 (3 H, br) \qquad 1115 (3 C, s) \\ 7.36 (3 H, d, J) = 6.2 Hz) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 1372 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.37 (1 H, m) \qquad 125.4 (3 C, s) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 (1 H, m) \qquad 126 (1 H, m) \\ 7.36 (1 H, m) \qquad 126 $					7.40 (3 H, m)	137.3 (2 C, s) 125.7 (2 C, s)
(VII)1950(s)1960(s) $2524(w)$ $7.97(3H, br)$ $2248(2C, s)$ $1870(s)$ $1870(s)$ $1874(s)$ $7.51(3H, dd)$ $145.2(3C, s)$ $1870(s)$ $1870(s)$ $1874(s)$ $7.51(3H, dd)$ $137.3(3C, s)$ $1870(s)$ $1870(s)$ $1874(s)$ $7.33(3H, dd)$ $125.24(s)$ $137.3(3C, s)$ $1870(s)$ $1870(s)$ $1874(s)$ $1251(3C, s)$ $1252(3C, s)$ $1253(3C, s)$ $1373(s)$ $1870(s)$ $1236(s)$ $1235(4Hz)$ $1128.9(5C, s)$ $12251(3C, s)$ $1036(s)$ $1936(s)$ $1950(s)$ $2532(w)$ $7.97(3H, dr)$ $11254(3C, s)$ $11115(3C, s)$ $7.90(3H, dr)$ $11115(3C, s)$ $216.6(2C, s)$ $1453(3C, s)$ $11115(3C, s)$ $7.90(3H, dr)$ $12354(3C, s)$ $1372(3C, s)$ $1372(3C, s)$ $1115(3C, s)$ $7.90(3H, dr)$ $12372(3C, s)$ $1372(3C, s)$ $1372(3C, s)$ $1115(3C, s)$ $7.36(3H, br)$ $12372(3C, s)$ $1233(4H, br)$ $1272(3C, s)$ $11155(3C, s)$ $7.36(3H, br)$ $1272(3C, s)$ $1272(3C, s)$ $11155(3C, s)$ $7.36(3H, br)$ $1272(3C, s)$ $1272(3C, s)$ $11156(3C, s)$ $7.36(3H, br)$ $1272(3C, s)$ $1272(3C, s)$ $1256(4)$ $126(4H, dr)$ $1274(3C, s)$ $1272(3C, s)$ $1256(4)$ $126(4H, dr)$ $1274(3C, s)$ $1274(3C, s)$ $1256(4)$ $120(1H, m)$ $1221(4C, s)$ $1275(4(3C, s))$ $1250(10, c)$ $120(1H, m)$ $120(1H, m)$ $1274(3C, s)$						136.7 (1 C, s) 119.9 (1 C, s)
	(VII)	1950(s)	1960(s)	2524(w)	7.97 (3 H, br)	224.8 (2 C, s) 74.3 (1 C, s)
7.51 (3 H, dd)137.3 (3 C, s)7.33 (3 H, dd)137.3 (3 C, s)7.33 (3 H, dd)128.9 (3 C, s)8.5 (1 H, m)119.4 (3 C, s)3.85 (1 H, m)119.4 (3 C, s)3.85 (1 H, m)119.4 (3 C, s)2.00 (2 H, d, $J = 9.8$ Hz)111.5 (3 C, s)2.00 (2 H, d, $J = 8.6$ Hz)111.5 (3 C, s)7.97 (3 H, br)216.6 (2 C, s)1856(s)1860(s)7.90 (3 H, d, $J = 8.6$ Hz)1856(s)1860(s)7.90 (3 H, d, $J = 8.6$ Hz)1856(s)1860(s)7.91 (4 H, d)137.2 (3 C, s)7.36 (3 H, br)137.2 (3 C, s)1350 (1 H, m)129.1 (3 C, s)129.1 (3 C, s)3.10 (1 H, m)3.10 (1 H, m)125.4 (3 C, s)		1870(s)	1874(s)		7.80 (3 H, d, J = 8.9 Hz)	145.2 (3 C, s) 62.8 (2 C, s)
7.33 (3 H, dd)128.9 (3 C, s)7.33 (3 H, dd)128.9 (3 C, s)4.93 (2 H, d, $J = 6.4$ Hz)125.1 (3 C, s)3.85 (1 H, m)119.4 (3 C, s)3.85 (1 H, m)119.4 (3 C, s)2.00 (2 H, d, $J = 9.8$ Hz)111.5 (3 C, s)2.00 (2 H, d, $J = 9.8$ Hz)111.5 (3 C, s)1856(s)1950(s)2532(w)7.97 (3 H, br)1856(s)1860(s)7.97 (3 H, br)216.6 (2 C, s)7.53 (3 H, br)7.93 (3 H, br)137.2 (3 C, s)7.56 (3 H, dd)129.1 (3 C, s)137.2 (3 C, s)7.56 (3 H, dd)129.1 (3 C, s)3.10 (1 H, m)125.4 (3 C, s)3.10 (1 H, m)125.4 (3 C, s)					7.51 (3 H, dd)	137.3 (3 C, s)
(VIII)1936(s)1936(s)2532(w) 7.97 (3 H, m)1194 (3 C, s) 3.85 (1 H, m) $1194 (3 C, s)$ 3.85 (1 H, m) $1194 (3 C, s)$ 2.00 (2 H, d, $J = 9.8$ Hz) 111.5 (3 C, s) 7.97 (3 H, br) 216.6 (2 C, s) 7.90 (3 H, d, $J = 8.6$ Hz) $1372 (3 C, s)$ 7.53 (3 H, br) $1372 (3 C, s)$ 7.56 (3 H, br) $1372 (3 C, s)$ 7.56 (3 H, dd) $1291 (3 C, s)$ 7.36 (3 H, dd) $1291 (3 C, s)$ 4.74 (2 H, d, $J = 6.2$ Hz) $125.4 (3 C, s)$ 3.10 (1 H, m) 3.10 (1 H, m)					7.33 (3 H, dd)	128.9 (3 C, s)
(VIII)1936(s)1930(s)2532(w) 7.97 (3 H, br)119.4 (3 C, s) 2.00 (2 H, d , $J = 9.8$ Hz)111.5 (3 C, s) 2.00 (3 H, br) 216.6 (2 C, s) $1856(s)$ $1860(s)$ $2532(w)$ 7.97 (3 H, br) 216.6 (2 C, s) 7.36 (3 H, br) $1372.(3 C, s)$ 7.36 (3 H, br) $1372.(3 C, s)$ 7.36 (3 H, br) $1291.(3 C, s)$ 4.74 (2 H, d , $J = 6.2$ Hz) 125.4 (3 C, s) 3.10 (1 H, m) 3.10 (1 H, m) 125.4 (3 C, s) 3.10 (1 H, m)					4.93 (2 H, d, <i>J</i> = 6.4 Hz)	125.1 (3 C, s)
(VIII)1936(s)1930(s) $2532(w)$ 7.97 (3 H, br) 111.5 (3 C, s) $1856(s)$ $1950(s)$ $2532(w)$ 7.97 (3 H, br) 216.6 (2 C, s) $1856(s)$ $1860(s)$ 7.90 (3 H, d, $J = 8.6$ Hz) 145.3 (3 C, s) 7.53 (3 H, br) 1372.3 (3 C, s) 7.36 (3 H, dd) 1372.3 (3 C, s) 7.36 (3 H, dd) 1291.1 (3 C, s) 4.74 (2 H, d, $J = 6.2$ Hz) 125.4 (3 C, s) 3.10 (1 H, m) 3.10 (1 H, m) 125.4 (3 C, s) 3.10 (1 H, m)					3.85 (1 H, m)	119.4 (3 C, s)
(VIII)1936(s)1950(s)2532(w) 7.97 (3 H, br) 216.6 (2 C, s1856(s)1860(s) 7.90 (3 H, d, $J = 8.6$ Hz)145.3 (3 C, s 7.53 (3 H, br) 137.2 (3 C, s 7.36 (3 H, br)137.2 (5 C, s 7.36 (3 H, dd) 1229.1 (3 C, s 4.74 (2 H, dJ)129.1 (3 C, s 3.10 (1 H, m) 3.10 (1 H, m) 125.4 (3 C, s					2.00 (2 H, d, <i>J</i> = 9.8 Hz)	111.5 (3 C, s)
1856(s) 1860(s) 7.90 (3 H, d. J = 8.6 Hz) 145.3 (3 C, s) 7.53 (3 H, br) 137.2 (3 C, s) 7.36 (3 H, dd) 129.1 (3 C, s) 4.74 (2 H, d. J = 6.2 Hz) 125.4 (3 C, s) 3.10 (1 H, m) 3.10 (1 H, m)	(III)	1936(s)	1950(s)	2532(w)	7.97 (3 H, br)	216.6 (2 C, s) 119.6 (3 C, s)
7.53 (3 H, br) 137.2 (3 C, s) 7.36 (3 H, dd) 129.1 (3 C, s) 4.74 (2 H, d, $J = 6.2$ Hz) 129.4 (3 C, s) 3.10 (1 H, m)		1856(s)	1860(s)		7.90 (3 H, d, J = 8.6 Hz)	145.3 (3 C, s) 111.5 (3 C, s)
7.36 (3 H, dd) 129.1 (3 C, s_1^{-1} 4.74 (2 H, d, $J = 6.2$ Hz) 125.4 (3 C, s_2^{-1} 3.10 (1 H, m)					7.53 (3 H, br)	137.2 (3 C, s) 66.7 (1 C, s)
4.74 (2 H, d, J = 6.2 Hz) 125.4 (3 C, s) 3.10 (1 H, m)					7.36 (3 H, dd)	129.1 (3 C, s) 55.2 (2 c, s)
3.10 (1 H, m)					4.74 (2 H, d, <i>J</i> = 6.2 Hz)	125.4 (3 C, s)
					3.10 (1 H, m)	
2.22 (2 H, d, J = 9.0 Hz)					2.22 (2 H, d, <i>J</i> = 9.0 Hz)	

⁻ In **KB**t duces or CH₂Cl₂ solution. Abbreviations: w. weak; s, strong; vs, very strong. ⁻ Spectra measured at 21⁻C; Chemical shifts in ppin from Me₄Si. Abbreviations: s, singlet; d, doublet; dd, doublet of doublet; tt, triplet of triplet; m, multiplet; br, broad singlet. ⁻ Solvents used for NMR spectra: CD₃CN for [Et₄N]MoL(CO)₃] (¹H and ¹³C); CDCl₃ for (V)-(VIII) (¹H and ¹³C); acetone- d_6 for (II), (IV) (¹H and ¹³C); acetone- d_6 for (III) (¹H); CD₂Cl₂ for (III) ¹³C). ^{*} NO).

anions $[MoL(CO)_3]^-$ and $[MoTp(CO)_3]^-$ are comparable. Because many reactions are possible for $[MoTp(CO)_3]^-$ [7], we expect that $[MoL(CO)_3]^-$ and $[WL(CO)_3]^-$ to undergo as many if not more reactions.

The solid-state structure of $[MoL(CO)_2(\pi-allyl)]$ (VII)

Complex VII has 8 equivalent mononuclear units in the monoclinic unit cell. The molecular geometry, with numbering scheme, is depicted in the ORTEP drawing (Fig. 1). For further crystallographic details see Experimental and Table 3.

The fractional coordinates and anisotropic displacement coefficients of all the non-hydrogen atoms, and the selected bond lengths and angles for VII are given in Tables 4 and 5, respectively. Fractional atomic coordinates of all the hydrogen atoms (Table 6) and $F_{\rm o}$ vs. $F_{\rm c}$ (Table 7) are available from the authors.

The structure of VII consists of discrete units of $[MoL(CO)_2(\pi-C_3H_5)]$ as shown in Fig. 1. It has C_s symmetry within experimental error, with the mirror plane consisting of one benzotriazolyl fragment, the metal atom, and the central carbon

Crystal data for $[MoL(CO)_2(\pi-C_3H_5)]$		
Formula	C ₂₃ H ₁₈ BMoN ₉ O ₂	
Color	orange-yellow	
$D_{\rm calc.}$ (g/cm ³)	1.57	
$D_{\rm obs.} (\rm g/cm^3)$	1.58	
Crystal size (mm)	0.4×0.2×0.2	
Crystal system	monoclinic	
Space group	C2/c	
Cell dimensions:		
a (Å)	22.265(6)	
b (Å)	16.711(5)	
c (Å)	16.842(5)	
β(°)	130.84(2)	
$V(Å^3)$	4741(2)	
Z (molecules/unit cell)	8	
Data collection mode	2 0 : 0	
$2\theta_{\max}(\circ)$	50.0	
h, k, l (quadrant collected)	± 26, 16, 16	
Radiation	$Mo-K_{\alpha} \ (\lambda = 0.71073 \text{ Å})$	
$\mu \ (\mathrm{mm}^{-1})$	0.578	
Absorption correction	empirical	
NO/NV ^{a,b}	2647/326	
R ^a , R _w ^a	0.035, 0.030	
GOF ^a	1.35	

^a For the meaning of each term, see text. ^b No. of measurements = 4703, no. of independent reflections = 4029, no. of independent reflections with $I > 3\sigma(I) = 2647$.

Table 3

Table 4

_
3
Η
ເນື
Ţ
್ಷ
ŝ
8
Ē
<u> </u>
Ξ.
Ŀ
9 (
Ś.
1
×
*2
ੁ
а У
Ц
<u> </u>
Ľ
e
- 8
÷
5
Ē
ੁਠੁੱ
5
. isi
Φ
. je
5
Ě
3
S
Ē
ğ
~
*
Ξ
×
ş
ž
n 8
÷
ō
- 8
<u> </u>
Ē
ĝ
<

Atom	×	7	N	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	
Mo	2288(1)	5621(1)	4020(1)	55(1)	39(1)	68(1)	- 1(1)	45(1)	2(1)	
Q(I)	1894(2)	7228(2)	2854(3)	79(2)	53(2)	94(3)	22(2)	47(2)	11(2)	
0(2)	3543(2)	6761(2)	5831(3)	93(3)	76(3)	89(3)	- 33(2)	52(2)	- 12(2)	
C(1)	2026(2)	6622(3)	3278(4)	50(3)	54(3)	69(3)	0(3)	35(3)	1(2)	
C(2)	3086(3)	6319(3)	5184(4)	73(3)	47(3)	77(4)	- 7(3)	52(3)	5(2)	
C(3)	1057(3)	6079(3)	3357(5)	67(3)	70(4)	145(6)	- 20(4)	74(4)	- 2(3)	
C(4)	1375(4)	5522(3)	4161(6)	110(5)	58(4)	166(6)	- 11(4)	120(5)	- 10(3)	
C(3)	2038(4)	5768(3)	5147(5)	149(6)	74(4)	137(5)	7(4)	124(5)	23(4)	
N(1)	1863(2)	4144(2)	2521(3)	47(2)	41(2)	51(2)	4(2)	33(2)	- 1(2)	
N(2)	1527(2)	4778(2)	2607(3)	51(2)	44(2)	61(2)	6(2)	36(2)	1(2)	
N(3)	762(2)	4827(2)	1791(3)	50(2)	49(2)	64(3)	12(2)	80(2)	5(2)	
N(4)	2923(2)	3830(2)	4432(2)	48(2)	35(2)	48(2)	0(2)	33(2)	0(2)	
N(5)	2763(2)	4406(4)	4836(3)	59(2)	44(2)	52(2)	0(2)	39(2)	- 3(2)	
N(6)	2971(2)	4179(2)	5730(3)	64(2)	54(3)	56(2)	- 4(2)	43(2)	- 10(2)	
N(7)	3236(2)	4665(2)	3521(2)	45(2)	43(2)	48(2)	0(2)	34(2)	1(1)	
N(8)	3142(2)	5392(2)	3786(3)	50(2)	43(2)	57(2)	1(2)	37(2)	1(2)	
N(9)	3655(2)	5912(2)	3943(3)	54(2)	43(2)	58(2)	0(2)	37(2)	- 7(2)	
Æ	2746(3)	3953(3)	3388(3)	50(3)	37(3)	52(3)	4(2)	34(3)	1(2)	
c(11)	600(2)	4203(2)	1150(3)	49(3)	52(3)	48(3)	14(2)	26(2)	- 5(2)	
C(12)	1284(2)	3767(2)	1600(3)	51(3)	46(2)	42(3)	5(2)	30(2)	- 8(2)	
C(13)	1288(3)	3075(3)	1131(3)	64(3)	60(3)	52(3)	- 2(2)	41(3)	- 10(2)	
C(14)	571(3)	2867(3)	177(4)	80(4)	70(3)	56(3)	- 9(3)	43(3)	- 26(3)	
C(15)	-114(3)	3321(3)	- 291(4)	68(4)	87(4)	47(3)	5(3)	24(3)	- 24(3)	
C(16)	-119(3)	3979(3)	175(4)	58(3)	69(3)	68(4)	22(3)	31(3)	- 3(3)	
C(21)	3257(2)	3207(2)	5107(3)	40(2)	42(2)	45(3)	2(2)	27(2)	- 6(2)	
C(22)	3284(2)	3425(3)	5926(3)	46(2)	51(3)	44(3)	- 1(2)	28(2)	- 11(2)	
C(23)	3606(2)	2908(3)	6774(3)	56(3)	74(3)	50(3)	6(3)	32(3)	- 13(3)	
C(24)	(E)606E	2205(3)	6767(4)	60(3)	81(4)	75(4)	35(3)	41(3)	7(3)	
C(25)	3884(3)	1992(3)	5952(4)	59(3)	52(3)	90(4)	24(3)	48(3)	11(2)	
C(26)	3560(2)	2473(2)	5100(3)	53(3)	49(3)	62(3)	8(2)	37(2)	2(2)	
C(31)	3834(2)	4719(2)	3507(3)	42(2)	54(3)	33(2)	4(2)	24(2)	- 3(2)	
C(32)	4100(2)	5511(2)	3779(3)	45(2)	51(3)	39(2)	4(2)	27(2)	- 2(2)	
C(33)	4741(2)	5766(3)	3859(3)	50(2)	69(3)	48(3)	1(2)	29(2)	- 12(2)	
C(34)	5070(3)	5216(3)	3653(3)	50(3)	104(4)	54(3)	- 1(3)	37(2)	-11(3)	
C(35)	4799(2)	4421(3)	3382(3)	59(3)	95(4)	55(3)	-8(3)	42(2)	1(3)	
C(36)	4181(2)	4159(3)	3297(3)	54(2)	65(3)	45(3)	- 1(2)	36(2)	2(2)	
" The anisot	tropic displacement	coefficients take 1	the form: $-2\pi^2(h^2)$	$2a^{2}a^{2}U_{11} + \ldots + 2$	hka*b*U ₁₂))			

Table 5

Selected bond lengths (Å) and bond angles (°)

Mo-C(1)	1.936(5)	Mo-C(2)	1.951(4)	Mo-C(3)	2.311(6)
Mo-C(4)	2.200(11)	Mo-C(5)	2.313(11)	Mo-N(2)	2.290(3)
Mo-N(5)	2.287(3)	Mo-N(8)	2.213(5)	O(1) - C(1)	1.161(6)
O(2) - C(2)	1.147(5)	C(3)C(4)	1.395(10)	C(4)-C(5)	1.378(8)
N(1) - N(2)	1.359(6)	N(1)-B	1.532(5)	N(1)-C(12)	1.360(4)
N(2) - N(3)	1.316(4)	N(3) - C(11)	1.369(6)	N(4)-N(5)	1.354(6)
N(4)-B	1.543(8)	N(4) - C(21)	1.351(5)	N(5)-N(6)	1.309(6)
N(6)C(22)	1.371(5)	N(7)-C(31)	1.349(7)	N(7)-N(8)	1.358(5)
N(7)-B	1.528(6)	N(8)-N(9)	1.318(6)	N(9)-C(32)	1.367(7)
C(11)-C(16)	1.401(5)	C(21)-C(26)	1.404(6)	C(31)-C(36)	1.398(8)
C(11) - C(12)	1.383(6)	C(21) - C(22)	1.390(8)	C(31) - C(32)	1.399(5)
C(12)-C(13)	1.404(7)	C(22)-C(23)	1.401(7)	C(32) - C(33)	1.408(8)
C(13)-C(14)	1.376(5)	C(23) - C(24)	1.359(8)	C(33)-C(34)	1.355(8)
C(14)-C(15)	1.395(8)	C(24)-C(25)	1.383(11)	C(34)-C(35)	1.406(7)
C(15)-C(16)	1.356(9)	C(25)-C(26)	1.367(7)	C(35)-C(36)	1.361(8)
C(1)-Mo-C(2)		79.8(2)	C(3)-C(4)-C(5)		115.8(5)
C(1)-Mo-N(2)		98.9(2)	C(2)-Mo-N(2)		168.7(3)
C(1)-Mo-N(5)		168.7(2)	C(2)-Mo-N(5)		99.7(1)
N(2)-Mo-N(5)		79.4(1)	C(1)-Mo-N(8)		88.0(2)
C(2)-Mo-N(8)		87.6(2)	N(2)-Mo-N(8)		81.2(2)
N(5)-Mo-N(8)		80.7(2)	Mo-C(1)-O(1)		177.9(4)
Mo-C(2)-O(2)		176.5(5)	N(2)-N(1)-B		120.9(3)
N(2)-N(1)-C(12)		107.8(3)	B-N(1)-C(12)		131.2(4)
Mo-N(2)-N(1)		120.4(2)	Mo-N(2)-N(3)		128.3(3)
N(1) - N(2) - N(3)		111.3(3)	N(2)-N(3)-C(11)		105.7(4)
N(5)-N(4)-B		121.5(3)	N(5)-N(4)-C(21)	-	107.8(4)
B-N(4)-C(21)		130.6(4)	Mo-N(5)-N(4)		119.9(3)
Mo-N(5)-N(6)		128.7(3)	N(4)-N(5)-N(6)		111.1(3)
N(5)-N(6)-C(22)		106.6(4)	N(8)-N(7)-B		119.6(5)
N(8)-N(7)-C(31)		108.2(3)	B-N(7)-C(31)		131.9(4)
Mo-N(8)-N(7)		123.4(3)	Mo-N(8)-N(9)		125.7(3)
N(7)-N(8)-N(9)		110.8(4)	N(8)-N(9)-C(32)		106.5(3)
N(1) - B - N(4)		109.0(5)	N(1) - B - N(7)		109.1(3)
N(4) - B - N(7)		108.1(3)	N(3)-C(11)-C(12	()	109.9(3)
N(3)-C(11)-C(16))	129.6(5)	C(12)-C(11)-C(1	6)	120.5(5)
N(1)-C(12)-C(11))	105.3(4)	N(1)-C(12)-C(13	6)	132.3(4)
C(11)-C(12)-C(13)	122.3(3)	C(12)-C(13)-C(1	4)	115.8(4)
C(13)-C(14)-C(15	5)	121.8(5)	C(14)-C(15)-C(1	6)	122.2(4)
C(11)-C(16)-C(15	5)	117.3(5)	N(4)-C(21)-C(22	() ()	106.0(4)
N(4)-C(22)-C(21)	-)	132.1(5)	C(22)-C(21)-C(2	6)	121.8(4)
N(6)-C(22)-C(21))	108.4(4)	N(6)-C(22)-C(23)	130.7(5)
C(21)-C(22)-C(23	5)	120.8(4)	C(22)-C(23)-C(2	4)	116.7(6)
C(23)-C(24)-C(25	5)	122.3(5)	C(24)-C(25)-C(2	6)	122.8(5)
C(21)-C(26)-C(25	5)	115.6(6)	N(7)-C(31)-C(32	2)	105.6(4)
N(7)-C(31)-C(36))	132.4(4)	C(32)-C(31)-C(3	6)	122.0(5)
N(9)-C(32)-C(31))	108.8(4)	N(9)-C(32)-C(33	()	130.9(4)
C(31)-C(32)-C(33	8)	120.3(5)	C(32)-C(33)-C(3	4)	116.9(4)
C(33)-C(34)-C(35	5)	122.4(6)	C(34)-C(35)-C(3	6)	121.8(6)
C(31)-C(36)-C(35	5)	11 6.5(4)			

atom of the allyl group. Several important features were unambiguously found: (1) the tridentate ligand, L^- , occupies three facial sites in a pseudo-octahedron as expected; (2) the ligand has a structure containing the more-hindered B-N bonds; and (3) the metal-ligand coordination occurs through the nitrogen atom at the 2-position of the ring of the benzotriazolyl fragments.

The Mo separations (Table 5) from the coordinated N atoms, viz., N(8), N(5), and N(2), are 2.213(5), 2.287(3), and 2.290(3) Å, respectively, indicating that the longer Mo-N distances occur when there is a carbonyl group trans to the nitrogen atom. A similar pattern was previously reported for the π -allyl complexes, [Mo(PhBPz₃)(CO)₂(π -C₃H₅)] and [Mo(PhBPz₃)(CO)₂(η^3 -C₇H₇)] [8]. This pattern probably reflects the stronger π -acidity of the carbonyls relative to that of the π -allyl group. In the [Mo(PhBPz₃)(CO)₂(π -C₃H₅)] structure, the two Mo-CO distances are 1.908(7) and 1.928(6) Å, which are relatively short when compared with those of 1.936(5) Å for Mo-C(1)O(1) and 1.951(4) Å for Mo-C(2)O(2) in VII, showing that L⁻ is a weaker σ -donor than PhBPz₃⁻. Because Tp⁻, Tp'⁻, and PhBPz₃⁻, are similar the electron-donating ability of L⁻ should be much less than that of either Tp⁻ or Tp'⁻. This deduction is reasonable and finds support from the variation in the weighted ν (CO) average values which are 1806 cm⁻¹ for [Et₄N][MoTp(CO)₃], 1798 cm⁻¹ for [Et₄N][MoTp'(CO)₃] [5a], and 1834 cm⁻¹ for [Et₄N][MoL(CO)₃] measured in acetonitrile.

Experimental

All operations were carried out under N_2 by standard Schlenk and vacuum-line techniques. Organic solvents were dried by standard procedures and distilled under N_2 before use. IR spectra, calibrated with polystyrene, were recorded on a Hitachi 270-30 model instrument. NMR spectra were obtained on a Bruker AM-400 (¹H, 400; ¹³C, 100.6 MHz) FT NMR spectrometer using internal deuterium lock solvents and tetramethylsilane standard. Elemental analyses were carried out by the Micro-analytical Service of the Department of Chemistry, National Cheng Kung University.

Preparation of potassium hydridotris(benzotriazol-l-yl)borate, KL

A mixture of 1-*H*-benzotriazole (20 g, 166 mmol) and KBH₄ (2.29 g, 42 mmol) was heated slowly to 220 °C and maintained at that temperature until 3.15 l (126 mmol) of H₂ had evolved (wet test meter). The mixture was worked up as described by Trofimenko [9]. Further recrystallization from CH₃OH/toluene gave 15.6 g (93%) of the white solid.

Preparation of $K[ML(CO)_3]$ and $[Et_4N][ML(CO)_3]$ (M = Mo, W)

A mixture of 2.03 g (5.0 mmol) of KL and 1.32 g (5.0 mmol) of $[Mo(CO)_6]$ in 50 ml of CH₃CN was stirred at reflux for 3 h to give a deep orange-red solution. A solution IR spectrum showed two ν (CO) bands at 1910s and 1796vs cm⁻¹ confirming the conversion of $[Mo(CO)_6]$ into K $[MoL(CO)_3]$. A deaerated solution of 1.47 g of Et₄NCl in 130 ml of H₂O was then added to the solution to give orange-red crystals. These were collected and washed twice with 20 ml of H₂O and three times with 10 ml of ether and then dried under vacuum; yield 3.01 g (89%).

A similar procedure was used to make K[WL(CO)₃] and [Et₄N][WL(CO)₃]

(ν (CO): 1900s, 1788vs cm⁻¹ in CH₃CN) except that a longer time (ca. 48 h) was needed to convert [W(CO)₆] completely into K[WL(CO)₃] and [Et₄N][WL(CO)₃]. If [W(CH₃CN)₃(CO₃] [10] is used in place of [W(CO)₆], about 2 h is sufficient for completion. Since both K[WL(CO)₃] and [Et₄N][WL(CO)₃] are very air-sensitive, the salts were not isolated for further characterization but were treated with electrophiles to give the neutral WL complexes by the same procedure as described below for the preparation of the molybdenum analogue.

Preparation of $[MoL(CO)_3X]$ (X = Br(I), I(III))

A solution of $[Et_4N][MoL(CO)_3[$ (0.68 g, 1.0 mmol) in 40 ml of CH₃CN was treated dropwise with a solution containing 1.1 mmol of Br₂ or I₂ in 10 ml of CH₃CN at room temperature. After all the halide had been added, the solvent was removed under vacuum. Recrystallization from CH₂Cl₂/CH₃OH gave I in 81% yield, and III in 85% yield.

Preparation of $MoL(CO)_2(NO)$ (V)

To a solution of $[Et_4N][MoL(CO)_3]$ (0.68 g, 1.0 mmol) in CH₃CN (30 ml) was added portionwise with [NO][BF₄] (0.17 g, 1.5 mmol). The mixture was stirred at room temperature for 30 min. The solvent was then removed to give a yellow solid. The solid was recrystallized from CH₂Cl₂/CH₃OH to give 0.38 g (69%) of V.

Preparation of $[MoL(CO)_2(\pi-allyl)]$ (VII)

To a suspension of $[Et_4N][MoL(CO)_3]$ (0.56 g, 0.83 mmol) in 20 ml of CH₃CN was added 2 ml of allyl bromide. The mixture was stirred at room temperature for 17 h and the solvent and excess allyl bromide were then removed under vacuum. Recrystallization from CH_2Cl_2/CH_3OH gave 0.40 g (86%) of the orange-yellow solid.

X-Ray diffraction study of $[MoL(CO)_2(\pi-allyl)]$ (VII)

Details of crystal data and intensity collection for VII are listed in Table 3. An orange-yellow crystal of approximate dimensions $0.4 \times 0.2 \times 0.2$ mm, grown from CH_2Cl_2 /hexane at room temperature, was mounted on a Nicolet R3m/V diffractometer equipped with a graphite monochromator. Seventeen independent reflections with $10.06 \le 2\theta \le 24.50^{\circ}$ were used for the least-squares determination of the cell constants. Reflections hkl in the 2θ range of 2.0 to 50.0° were collected with $-26 \le h \le 26, 0 \le k \le 16, 0 \le l \le 16$. Three standard reflections taken every 50 reflections revealed no signs of crystal deterioration. Systematic absences (hkl. h + k = 2n - 1 and h0l, l = 2n + 1 indicate space group Cc or C2/c. The observed density of 1.58 g/cm³ (by flotation) indicates the number of formula units in the unit cell to be eight. The space group C2/c was confirmed by successive refinements. The structure was solved by standard Patterson and Fourier methods (SHELXTL PLUS 86) [11] (transmission factor: min. 0.886 and max. 0.925). Hydrogen atoms were placed at idealized positions (C-H = 0.96 Å and B-H = 1.00Å) with a fixed isotropic displacement parameter of 0.08 $Å^2$. The refinements converged with R = 0.035 and $R_w = 0.030$ based on 2647 observed reflections with $I > 3.0\sigma(I) \quad (R = \Sigma || F_o || - |F_c || \Sigma |F_o|, \quad R_w = [\Sigma w(|F_o || - |F_c |)^2 \Sigma w |F_0 |^2]^{1/2}, \\ w = (\sigma^2(F) + 0.0001F^2)^{-1}). \quad \text{Goodness-of-fit} \quad (\text{GOF}) = 1.35 \quad (\text{GOF} = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c |)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = \text{number of observed reflections}, \quad NV = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_c ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o || - |F_o ||)^2 / (NO - NV)]^{1/2}, \quad NO = [\Sigma(w |F_o || - |F_o$ number of variables). $(\Delta/\sigma)_{max}$ in the final refinement cycle was 0.072. The maximum height in the final difference map was 0.23 e/Å³.

Acknowledgement

The authors wish to thank the National Science Council, ROC, for a grant to support this research.

References

- (a) K.-B. Shiu, K.-S. Liou, S.-L. Wang, C.P. Cheng and F.-J. Wu, J. Organomet. Chem., 359 (1989)
 Cl; (b) K.-B. Shiu, K.-S. Liou, C.P. Cheng, B.-R. Fang, Y. Wang, G.-H. Lee and W.J. Vong,
 Organometallics, in press; (c) K.-B. Shiu and L.-Y. Lee, J. Organomet. Chem., 348 (1988) 357.
- 2 F.-M. Shen, M.Sc. Thesis, National Cheng Kung University, Tainan, Taiwan, June 1988.
- 3 F.J. Lalor, S. Miller and N. Garvey, J. Organomet. Chem., 356 (1988) C57.
- 4 M.D. Curtis and K.-B. Shiu, Inorg. Chem., 24 (1985) 1213.
- 5 (a) S. Trofimenko, J. Am. Chem. Soc., 91 (1969) 588; (b) S. Trofimenko, ibid., 91 (1969) 3183.
- 6 S. Trofimenko, Inorg. Chem., 8 (1969) 2675, 10 (1971) 504.
- 7 (a) S. Trofimenko, Acc. Chem. Soc., 4 (1971) 17; (b) S. Trofimenko, Chem. Rev., 72 (1972) 497; (c) A. Shaver, J. Organomet. Chem. Libr., 5 (1977) 157; (d) S. Trofimenko, Prog. Inorg. Chem., 34 (1986) 115.
- 8 F.A. Cotton, C.A. Murillo and B.R. Stults, Inorg. Chim. Acta, 22 (1977) 75.
- 9 S. Trofimenko, Inorg. Synth., 12 (1970) 99.
- 10 I.W. Stolz, G.R. Dobson and R.K. Sheline, Inorg. Chem., 2 (1963) 323.
- 11 G.M. Sheldrick, SHELXTL PLUS 86, Nicolet XRD Corporation, Madison, Wisconsin, USA, 1986.